Heterogeneity in synchronizing networks of mobile particles

Jorge P. Rodríguez, Víctor M. Eguíluz

Introduction: Fujiwara model

We consider a system of particles moving on a 2D square of size LxL. Particles will interact with any particle located at a distance less than d (Fig. 1A). The dynamics is determined by two ingredients: A B ■ Phase synchronization in the spatial network: $\phi_i(t+1) = \phi_i(t) + \sigma \sum \sin[\phi_j(t) - \phi_i(t)]$

where $\sigma = 0.005$ is the coupling strength, and \boldsymbol{d}_{ij} is the Euclidean distance between particles i and j. ■ Mobility: $x_i(t_k + \Delta t) = x_i(t_k) + v \cos(\xi_i(t_k))\Delta t/\tau_M$ mod L

interactions last. **If the nodes change their interacting neighbours more frequently, global synchronization is faster.** ■ Setting up a system in which faster nodes have larger zones of interaction, there is no global synchronization for high levels of heterogeneity.

IFISC (CSIC-UIB) Palma de Mallorca – Spain

Particles change randomly and periodically their motion direction.

jorge@ifisc.uib-csic.es

Discrete heterogeneous velocities

With probability p [1-p], particles move with velocity v_0 =10 [v_1 =100]. We characterize the dynamics with the average phase difference $\langle\Delta\phi\rangle$. The synchronization in the case of heterogeneous velocities ($p\neq 0,1$) is slower than for homogeneous velocities with $\overline{v} = pv_0 + (1-p)v_1$ (Fig. 3). There is a characteristic synchronization time ${\sf n}_{_{\sf T}}$ ($\langle\Delta\phi\rangle\sim e^{-t/n_T}$). Synchronization is faster for higher values of p , and for higher values of d (Fig. 4).

■ Cheng-Lin Tsao et al. Link Duration of the Random Way Point Model in Mobile Ad Hoc Networks, WCNC 2006, IEEE, 367-371. ■ Fujiwara, N., Kurths, J., Diaz-Guilera, A. Synchronization in Networks of Mobile Oscillators, PRE 83, 025101 (2011). ■ Prignano, L., Sagarra, O., Diaz-Guilera, A. Tuning Synchronization of Integrate-and-Fire Oscillators through Mobility, PRL 110, 114101 (2013). ■ Rodríguez, J.P. Synchronization in Multilayer Networks of Mobile Oscillators, Master Thesis, University of Balearic Islands, https://ifisc.uib-csic.es/publications/downfile.php?fid=4505 (2014).

Figure 7. Synchronization time for a system with heterogeneus velocities and radii of interaction, as a function of the width of the distribution of velocities, L=800, N=1600, d_o=20.

Finally, we study a special case: faster nodes have a larger radius of interaction ($v_i = v_2 + \Delta v_i$, $d_i = d_0 + \frac{\omega_0}{v_2} \Delta v_i$). This set up makes the interactions be non-symmetric (node i might be influenced by j without j feeling the presence of i, Fig. 1B). We find that, as we increase the width of the Gaussian

distribution, the synchronization process is slower, and eventually $n_{_{\rm T}}$ diverges (no global synchronization, Fig. 7).

Figure 2. QR code with a link to a movie (http://youtu.be/5kynQMk-lgQ), and snapshot at t=200. Diamonds and squares are, respectively, fast and slow particles (*p***=0.5), and color indicates phases. More information** in http://ifisc.uib-csic.es/users/jorge/mobilepart.htm

modifying the average relative velocity and, hence, the average time that an interaction lasts. A similar analysis has been performed in the system with discrete heterogeneous velocities, obtaining the same conclusion: changing the velocity features modifies the average link time duration and, hence, influences the characteristic synchronization time.

Continuous heterogeneous velocities

We consider a Gaussian distribution of velocities centred in $v=40$ of width γ , and we study the change in the synchronization time as the width is varied. Figure 4 shows how $1/n_{\text{t}}$ increases with γ , i.e. the process is faster as heterogeneity is continuously increased ($n_T^{-1} = A + B\gamma + C\gamma^2$). Increasing the heterogeneity in the velocities, we decrease the time duration of the links. The relation between n_{τ} and the average link time \langle is linear (as the interactions last more, the global synchronization process is slower (Fig. 5)). The average link time duration is inversely proportional to the average relative velocity $\langle ||v_1 - v_2|| \rangle$, and this quantity behaves parabolically with the width of the velocity distribution (Fig. 6). Summing up, the parabolic behaviour of $1/n_T$ with the width comes from

Figure 4. Inverse of the synchronization time as a function of the width of the velocity distribution. The green line represents a parabolic fit, L=800, N=1600, d=20.

Figure 5. Synchronization time as a function of the average link time duration. The red line represents a linear fit, L=800, N=1600, d=20.

Figure 6. Numerical calculation of the average relative velocity between any two nodes as a function of the width of the velocity distribution. The red line represents a parabolic fit.

Conclusions

■ A system of particles with discrete heterogeneous velocities synchronizes slightly slower than one with a homogeneous average velocity. ■ If the distribution of velocities is continuous, the synchronization time decreases with the width of the distribution. ■ Modifying the velocity distribution changes the average relative velocity between any two nodes, influencing the average time that the

References

 $y_i(t_k + \Delta t) = y_i(t_k) + v \sin(\xi_i(t_k)) \Delta t / \tau_M \text{ mod } L$

Each node has a particular interaction distance, so interactions are nonsymmetric (B and C interact with each other, A influences C, but C does not influence A).

Figure 3. Average phase difference evolution for different values of p. Empty and filled symbols correspond, respectively, to homogeneous and heterogeneous systems, L=200, N=100.

Figure 4. Characteristic synchronization time as a function of p for different values of the interaction radius, L=200, N=100.